A CNN-Based Prediction-Aware Quality Enhancement Framework for VVC
نویسندگان
چکیده
This paper presents a framework for Convolutional Neural Network (CNN)-based quality enhancement task, by taking advantage of coding information in the compressed video signal. The motivation is that normative decisions made encoder can significantly impact type and strength artifacts decoded images. In this paper, main focus has been put on defining prediction signal intra inter frames. used training phase as well input to help process learning are specific each type. Furthermore, retain low memory requirement proposed method, one model all Quantization Parameters (QPs) with Parameter (QP)-map, which also shared between luma chroma components. addition Post Processing (PP) approach, In-Loop Filtering (ILF) codec integration considered, where characteristics Group Pictures (GoP) taken into account boost performance. CNN-based Quality Enhancement (QE) implemented top Versatile Video Coding (VVC) Test Model (VTM-10). Experiments show prediction-aware aspect method improves efficiency gain default QE 1.52%, terms BD-BR, at same network complexity compared filter.
منابع مشابه
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولActivity Prediction using a Space-Time CNN and Bayesian Framework
We present a technique to address the new challenge of activity prediction in computer vision field. In activity prediction, we infer the next human activity through “classified activities” and “activity data analysis. Moreover, the prediction should be processed in real-time to avoid dangerous or anomalous activities. The combination of space–time convolutional neural networks (ST-CNN) and imp...
متن کاملA Framework for Compassion-Based Teaching
To present a framework for compassionate teaching, the views of teachers and students on the topic were sought. These informants were chosen from among their corresponding populations in Tehran, using the snowball and mixed methods. Semi-structured interviews were used to gather the needed data. To analyze the data open coding and descriptive categorization were utilized. Results show that from...
متن کاملDepth-aware CNN for RGB-D Segmentation
Convolutional neural networks (CNN) are limited by the lack of capability to handle geometric information due to the fixed grid kernel structure. The availability of depth data enables progress in RGB-D semantic segmentation with CNNs. State-of-the-art methods either use depth as additional images or process spatial information in 3D volumes or point clouds. These methods suffer from high compu...
متن کاملDAQ_UWE: A framework for designing data quality aware web applications
The use of Web applications in order to provide data with an acceptable level of quality is currently of paramount importance for any enterprise that wishes its business processes to succeed. The adequate management of the corresponding data resources through the introduction of all those aspects whose aim is to monitor the levels of quality for the task in hand is therefore essential. We claim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE open journal of signal processing
سال: 2021
ISSN: ['2644-1322']
DOI: https://doi.org/10.1109/ojsp.2021.3092598